Section 4.1

Radian and Degree Measure

Angles

Trigonometry: the measurement of angles

Standard Position: Angles whose initial side is on the positive x-axis

Graphing positive angles

Graphing Negative angles

(go back to graph and write in)

Coterminal angles

- Angles that share the same terminal side
- Differ by 360° (or a multiple of 360 ie. 720)
- Example 4 vs example 1
- To find positive and negative coterminal angles- add and subtract 360°

= 1.) 210° 2.)-180° 3.) 400°
$$0' + 360' = 570'$$
 $-180' + 360' = 180'$ $400' + 360' = 570'$ $-180' - 360' = -540'$ $400' - 360' = 570'$

Radian Measure

- Radians are a 2nd way to measure an angle
- Positive and negative radian measures:

Graphing positive angles

2.)
$$\frac{6\pi}{5}$$

Graphing negative angles

2.)
$$\frac{-3\pi}{7}$$
4.) $\frac{-13\pi}{4} = -3.25\pi$

Coterminal angle with radians

- Differ by 2π
- To find a positive and negative coterminal angle, add and subtract 2π

1.)
$$3\pi$$
2.) $\frac{3\pi}{4} \pm \frac{2\pi}{1.4}$
3.) $\frac{-5\pi}{6} \pm \frac{2\pi}{1.6}$
3.7 $\pm \frac{2\pi}{1.4}$
3.) $\frac{-5\pi}{6} \pm \frac{2\pi}{1.6}$
3.7 $\pm \frac{2\pi}{1.4}$
3.) $\frac{-5\pi}{6} \pm \frac{2\pi}{1.6}$
3. $\pm \frac{2\pi}{1.4}$
3. $\pm \frac{2\pi}{1.6}$
3. $\pm \frac{2\pi}{1.4}$
4. $\pm \frac{2\pi}$

onversions

■ Degree to radian: Multiply by $\frac{\pi}{180}$

Radian to degree: Multiply by $\frac{180}{\pi}$ 1.) 5 1 130 2.) 31 180 3.)

Special angles

- Complementary angles- angles whose sum = 90
- Supplementary angles- angles whose sum = 180

Arc Length

Arc length- measures a segment (arc) of a circle

$$S = r\theta$$

 θ must be in radians

2.)
$$r = 3, \theta = \frac{4\pi}{5}$$

 $S = 3.4\pi = \frac{12\pi}{5}$

Area of a sector

$$A = \frac{1}{2}r^2\theta$$

1.)
$$r = 3, \theta = \frac{2\pi}{3}$$

$$A = 4 \cdot 3^{\frac{3}{2}} \cdot \frac{5\pi}{3}$$

Classwork

Pg 291 # 71-78

Homework

Pg 290-91 # 7-9, 13-19, 31-40, 49-52, 79, 80, 87, 91, 92